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ABSTRACT
Foraminifera are protozoans with biomineralized tests that can be successfully used
as a low cost monitoring tool to assess the health status of marine environments.
Living benthic foraminiferal assemblages can provide essential information on natural
and/or anthropogenic stresses and provide baseline conditions for studies on fossil
material. Several studies have highlighted the negative impact of phosphate treatment
industries along the Gulf of Gabes (Lesser Syrtis, Tunisia) on the marine environment.
However, only a few studies, based on living (stained) benthic foraminifera, are
presently available to assess environmental and/or ecological conditions in this Gulf.
Thirty-eight surface sediment samples were quantitatively investigated to identify the
dominant living benthic foraminiferal species and potential pollution-sensitive and
stress-tolerant species. One-hundred and sixty-one species were identified, and grouped
into seven clusters representing different environments within the Gulf. These groups
represent polluted settings (Cluster A and B), polluted environments characterized by
physicochemical variability (Cluster C), seagrass meadows and ‘‘pristine’’ sites (Cluster
D and E) and the region subjected to major industrial impact (Cluster F). The final
outlier Cluster, identified the foraminifera barren and all shallow coastal stations. A
SIMPER analysis helped identify species with clear and fast responses to environmental
perturbations (Ammonia tepida, Amphistegina lessonii, Brizalina striatula, Bulimina
marginata, Buliminella elegantissima, Eggereloides scaber, Peneroplis perutusus, Rosalina
macropora, Rosalina villardeboana, Trochammina inflata). A comparison with the
measured geochemical parameters (TOC, phosphorus in the sediments and heavymetal
concentrations in the seawater) has shown that the benthic foraminiferal assemblages
are mainly linked to phosphorus, TOC, As and Cd pollution. We also provide here the
first compilation of the identified living species in the Lesser Syrtis, their synonyms and
digital images of important species.

Subjects Ecosystem Science, Marine Biology, Environmental Impacts
Keywords Foraminifera, Bioindicators, Taxonomy, Pollution, Tunisia

INTRODUCTION
The phosphate treatment industry started in Tunisia (Lesser Syrtis) in the second half of
the 20th century. The high degree of pollution generated by this industry, within the Gulf of
Gabes, is well documented. As a result of this phosphate pollution, the marine environment
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within the Gulf of Gabes has been deeply affected since the beginning of the industrial
exploitations. The first production unit was created at Sfax in 1952, followed by the
industrial complex of Gabes in 1972, while the last industrial complex was created at Skhira
in 1988. These industries generate a large amount of waste products e.g., phosphogypsum
(PG). For each ton of phosphoric acid that is produced, five tons of PG are generated (Zairi
& Rouis, 1999;Tayibi et al., 2009). This waste product is well known to contain several types
of pollutants such as heavy metals, fluorine, phosphorus and even radioactive isotopes
(Rutherford, Dudas & Samek, 1994; Zairi & Rouis, 1999; Pérez-López, Alvarez-Valero &
Nieto, 2007; Ajam et al., 2009; El Afifi et al., 2009; Tayibi et al., 2009; Ajmal et al., 2014).
Phosphogypsum is generally stored on land forming giant stacks (up to 60 m high) but at
Gabes, all the industrial waste (including PG, industrial sludge, and wastewater) is directly
discharged into the sea.

This industrial pollution has heavily contaminated the marine sediments (El Zrelli et
al., 2015; Gargouri et al., 2011; Wali et al., 2013; Ayadi, Aloulou & Bouzid, 2015; Mkawar et
al., 2007) and seawater (Darmoul, Hadj-Ali & Vitiello, 1980; El Zrelli et al., 2018). Resultant
heavy metals bioaccumulation in marine fauna is documented (Rabaoui et al., 2014;
Messaoudi et al., 2009). The decline of the coral Cladocora caespitosa in the region (El Kateb
et al., 2016) and of macrobenthic faunas (Zaouali, 1993; Pérez Domingo, Castellanos &
Junoy, 2008; El Lakhrach et al., 2012) can be also attributed to the pollution.

Aside from impacting the phosphorus and heavy metal contents in the sediments and
water, additional forms of pollution are generated by the phosphate industry including
increased siltation of the seafloor. At the beginning of the 20th century, a large part of the
Gulf of Gabes was colonized by the seagrass Posidonia oceanica (El Zrelli et al., 2017 and
references therein). Ben Brahim et al. (2010) estimated a 90% loss of this seagrass cover
since 1960, which has consequently caused prominent siltation. A large area of the Gulf is
today covered by silty and muddy sediments (El Kateb et al., 2018b).

During the last decades benthic foraminifera have been widely used to investigate
environmental conditions (e.g., Resig, 1960;Watkins, 1961), and their application has been
recently extended to assess the ecological status (e.g.,Murray, 2006;Martínez-Colón, Hallock
& Green-Ruíz, 2009; Hallock et al., 2003; Hallock, 2012; Schönfeld et al., 2012; Dimiza et al.,
2016; Martínez-Colón et al., 2018, and references therein). Compared to other macro-and
micro-organisms, benthic foraminifera are advantageous because (i) they occur in marine
environments all over the world; (ii) a small volume of sediment sample is needed to
use them in environmental assessments due to the high foraminiferal densities (up to
thousand specimens per 100 cm3 of sediment) and (iii) their short life cycle allows them to
rapidly react to external stressors, e.g., pollutant contamination, anomalously high organic
matter supply (eutrophication/nutrification) (e.g., Schönfeld et al., 2012; Alve et al., 2016;
Jorissen et al., 2018, and reference therein) and/or thermal stress. Their added value is also
the production of a mineralized test that is preserved in the sedimentary archives, which
provides the possibility to reconstruct paleoenvironmental and paleoclimatic changes.

Numerous studies, based on living foraminifera, are used to highlight faunal changes
as a response to short-term stresses (e.g., Morvan et al., 2004; Denoyelle et al., 2010). These
investigations require the living cell to be stained at the time of sampling. The FOBIMO
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Initiative was instigated to meet the requirements of the Marine Strategy Framework
Directive-MSFD (European Parliament, 2008). It provided, for the first time, a standardized
protocol for sampling and treating sediments for biomonitoring studies based on living
(stained) benthic foraminifera (Schönfeld et al., 2012). This protocol is presently accepted
and applied to assess the impacts of pollution on marine environments (e.g., Buosi et al.,
2013; Titelboim et al., 2016) it has therefore, been applied in this study.

Only a few studies, based on benthic foraminifera, have been conducted in the Gulf of
Gabes. The investigation of Aloulou, EllEuch & Kallel (2012) along the northern coast of
the Gulf and of Ayadi et al. (2016) in the proximity of the industries at Gabes are based
on total benthic foraminiferal assemblages. As these two studies use total assemblages
they cannot be considered as representative of the current ecological and environmental
conditions. An additional study on living benthic foraminifera in Tunisia from Martins et
al. (2015) and Martins et al. (2016a) concerns the Bizerta lagoon, a site with a very limited
access to the open Mediterranean, located in northern Tunisia, far from the influence of
the Gabes industries.

The aim of the present research is to document variations in benthic foraminiferal
assemblage composition in relation to the pollution sources, to assess the response of living
(stained) benthic foraminifera to the pollution produced by the phosphate industries in
the Gulf of Gabes and to provide a comparison with a more pristine site (Djerba Island).

MATERIALS AND METHODS
Study area
The investigated area is located in the Gulf of Gabes, a 90 km wide and 100 km long
embayment in the Mediterranean Sea. It is delimited by the Kerkhenna Islands to the
north and Djerba Island to the south. Its bathymetry is gently sloping from the coast
to around 150 km with a ±50 m water depth. Within this region, tides are the highest
of the entire Mediterranean Sea reaching 1.7 m (Aloulou, EllEuch & Kallel, 2012). The
thirty-eight investigated stations can be subdivided into three groups (Fig. 1, Table 1):
Gabes (16 stations, from GBS-01 to GBS-16) and Djerba transects (15 stations, from
DJB-01 to DJB-15); Coastal stations (7 stations, from CST-01 to CST-07).

Sampling and samples treatment
The Djerba and Gabes transects were sampled in July 2014, perpendicular to the coastline
at water depths ranging from 4.5 to 19.5 m and 5.1 to 26.8 m, respectively. The Gabes
transect (GBS-01 to GBS-16) is 17.3 km long and is located between the industrial and
fishing harbours of Gabes. Stations are positioned at approximately 1 km intervals. The
Djerba transect (DJB-01 to DJB-15) is 13.8 km long and is located off the eastern coast of
Djerba Island (El Kateb et al., 2018b). Similarly, stations are positioned approximately 1
km apart. Five sedimentary facies were identified along the Gabest transect (facies G1-G5)
and three along the Djerba trasect (facies D1-D3, Fig. 2, Table 2).

Coastal stations (CST-01 to CST-07) were collected in January 2014, along the shoreline
at shallow depths (<1 m) and cover 200 km of the eastern Tunisian coastline. One station is
located in the Gulf of Hammamet next to El Kantaoui harbour (CST-01), four stations are
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Figure 1 Locationmap. Location map of the Gulf of Gabes and position of the investigated sites, show-
ing the Gabes and Djerba transects and coastal stations (CST). Modified after El Kateb et al. (2018c).

Full-size DOI: 10.7717/peerj.8839/fig-1

located along the Gulf of Gabes from Skhira to Zarat (CST-02 to CST-05) and two stations
are located along the western coast of Djerba Island (CST-06 and CST-07) (El Kateb et al.,
2018b).

Sediment samples from both the Gabes and Djerba transects were collected using an
Ekman-Birge box corer (15 × 15 × 30 cm), which was deployed from a small fishing
boat. Sediments from coastal stations were collected by hand. All samples were collected
and treated following the FOBIMO protocol (Schönfeld et al., 2012). The first centimeter
of surface sediment (an area of 50 cm2) was collected in plastic bottles and placed in
a rose Bengal solution (2 g/L in alcohol at 90%) for several weeks. The living (stained)
foraminifera were investigated with a Nikon SMZ18 microscope, picked and placed in
plummer cells, identified at species level and counted. Taxonomic identifications at species
level follows Cimerman & Langer (1991), Hottinger, Halicz & Reiss (1993), Loeblich Jr &
Tappan (1994),Milker & Schmiedl (2012) (Supplemental Information 1).

Geochemical analyses
The phosphorus sequential extraction (SEDEX) method of Ruttenberg et al. (2009) was
applied to all samples. The SEDEX extraction allows an accurate quantification of the
different sedimentary phosphorus reservoirs in both modern sediments and sedimentary
rocks (Ruttenberg, 1992; Coletti et al., 2017). The Total Organic Carbon (TOC in wt %) was
measured with Rock-Eval6 (Behar, Beaumont & Penteado, 2001). Total carbon, hydrogen
and nitrogen (C, H, N) content (in wt %) were measured in all surface sediment samples
using a Thermo Finnigan Flash EA 1112 gas chromatography analyser. Seawater samples
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Table 1 Coordinates.Geographic coordinates and water depths of the sampled stations.

Location Water
depth (m)

Coordinates
(latitude and longitude)

Gabes Transect
GSB-01 4.5 N33◦54′36.66′′/E10◦6′34.74′′

GSB-02 7.3 N33◦54′52.32′′/E10◦7′11.76′′

GSB-03 9.6 N33◦55′9.54′′/E10◦7′44.10′′

GSB-04 9.1 N33◦55′29.82′′/E10◦8′15.36′′

GSB-05 12 N33◦55′48.00′′/E10◦8′46.92′′

GSB-06 12.9 N33◦56′7.74′′/E10◦9′15.72′′

GSB-07 14.4 N33◦56′30.60′′/E10◦9′46.74′′

GSB-08 15 N33◦56′57.24′′/E10◦10′18.84′′

GSB-09 18 N33◦57′16.20′′/E10◦10′53.82′′

GSB-10 19.5 N33◦57′29.34′′/E10◦11′36.24′′

GSB-11 19.5 N33◦57′40.08′′/E10◦12′9.30′′

GSB-12 15,4 N33◦57′56.64′′/E10◦12′47.04′′

GSB-13 19.5 N33◦58′9.66′′/E10◦13′22.20′′

GSB-14 17.6 N33◦58′14.04′′/E10◦13′58.86′′

GSB-15 19.5 N33◦58′27.18′′/E10◦14′39.18′′

GSB-16 18 N33◦58′53.16′′/E10◦16′15.60′′

Djerba Transect
DJB-01 5.1 N33◦52′13.26′′/E10◦58′22.02′′

DJB-02 6.4 N33◦52′33.12′′/E10◦59′1.86′′

DJB-03 8.7 N33◦52′49.38′′/E10◦59′24.60′′

DJB-04 10.7 N33◦53′3.84′′/E10◦59′57.84′′

DJB-05 12.7 N33◦53′32.82′′/E11◦0′15.30′′

DJB-06 12.2 N33◦53′53.34′′/E11◦0′31.20′′

DJB-07 14 N33◦54′9.78′′/E11◦0′58.38′′

DJB-08 17.2 N33◦54′45.54′′/E11◦1′21.84′′

DJB-09 17.6 N33◦55′9.42′′/E11◦1′48.78′′

DJB-10 21.3 N33◦55′21.90′′/E11◦2′24.12′′

DJB-11 22 N33◦55′48.36′′/E11◦3′4.68′′

DJB-12 24 N33◦56′24.12′′/E11◦2′59.76′′

DJB-13 25,3 N33◦56′53.16′′/E11◦3′36.36′′

DJB-14 26 N33◦57′5.64′′/E11◦4′1.80′′

DJB-15 26.8 N33◦57′30.36′′/E11◦4′9.84′′

Coastal Stations
CTS-01 <1 m N 35◦53′49.15′′/E10◦35′45.79′′

CTS-02 <1 m N34◦17′19.98′′/E10◦5′45.00′′

CTS-03 <1 m N34◦2′15.84′′/E10◦2′9.36′′

CTS-04 <1 m N33◦53′5.76′′/E10◦7′13.92′′

CTS-05 <1 m N33◦41′57.90′′/E10◦21′34.02′′

CTS-06 <1 m N33◦43′39.00′′/E10◦44′22.50′′

CTS-07 <1 m N33◦51′34.62′′/E10◦44′41.40′′
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Figure 2 Profiles of the Gabes (A) and Djerba (B) transects showing the position of the collected sam-
ples, the sedimentary facies and the associated SIMPROF Clusters (squares), modified after El Kateb et
al. (2018c).

Full-size DOI: 10.7717/peerj.8839/fig-2

Table 2 Facies. Summary of the identified sedimentary facies along the Gabes and Djerba Transects
(modified after El Kateb et al., 2018b).

Stations Facies Sediments

GBS-01 to -02 G1 Dominant siliciclastic grains (e.g., quartz).
GBS-03 G2 Centimetric concretions of biogenic fragments partially

dissolved (e.g., bivalve, bryozoan, foraminifera and coral).
GBS-04 to -06 G3 Carbonate sand and biogenic fragments (bryozoans,

bivalves, gastropods and coral)
GBS-07 to -08, GBS-10 to -16 G4 Fine sediment (clay) with centimetric biogenic fragments
GBS-09 G5 Very fine sediments (clay and silt) with rare biogenic

fragments.
DJB-01 to -05 D1 Fine siliciclastic grains, Posidonia oceanicameadow
DJB-06 to -08. D2 Mix of sand and millimetric rounded biogenic poorly

preserved fragments
DJB-11 to -15 D3 Well-preserved biogenic fragments of bivalves, calcareous

algae, gastropods and bryozoans.

were collected at the seafloor; elemental analyses (e.g., As, Cd, Cu, Ni, Fe, Cr, Li, Pb, Zn, P)
were carried out by inductively coupled plasma optical emission spectroscopy (ICP-OES).
More detailed descriptions of all the geochemical methods can be found in El Kateb et
al. (2018c); El Kateb et al. (2018b); El Kateb et al. (2020), raw data are here presented in
Supplemental Information 2.
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Figure 3 SIMPROF dendrogram and associated Clusters, based on the Bray–Curtis similarity matrix
of fourth-root transformed living (stained) benthic foraminifera abundance data from the Lesser Syr-
tis.Gray square indicates the outlier Cluster composed of the foraminifera barren and all shallow coastal
stations, note that these are not considered in further statistical analyses.

Full-size DOI: 10.7717/peerj.8839/fig-3

Statistical treatment
Quantitative foraminiferal counts were treated with the Primer 7 software (Clarke et al.,
2014). The data set was fourth root transformed to limit the contribution of the most
abundant species (Field, Clarke & Warwick, 1982) and the Bray-Curtis (dis-)similarity
calculated. A Similarity Profile (SIMPROF) cluster analysis was performed to objectively
define the groups within the dendrogram (Fig. 3) and Multidimensional Scaling (MDS)
plots (Fig. 4). Based on the SIMPROF grouping, a Similarity Percentage (SIMPER)
analysis was run to identify discriminating taxa both within and between the groups. To
assess the relationship between the biotic (foraminiferal) assemblage data and measured
environmental (sediment andwater) parameters a BIOENV and global BEST test (statistical
significance) were performed. Following this, and using the identified best combination
of environmental parameters, a LINKTREE analysis (Fig. 5) was performed to link the
foraminiferal assemblage patterns with the suite of environmental parameters.

RESULTS
Six thousand, eight hundred and eighty seven living (stained) benthic foraminiferal
specimens, belonging to 161 species, were identified (Supplemental Information S2
and S3).
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Figure 4 nMDS plots showing SIMPROF clusters and abundances of selected benthic foraminferal species.Note that the nMDS plot has no di-
mensions and no axes and can be arbitrarily scaled, located, rotated or inverted. It gives simply the relationship of samples relative to each other
(Clarke et al., 2014).

Full-size DOI: 10.7717/peerj.8839/fig-4

Samples collected close to the industry in Gabes (GBS-01 to 02) are dominated by
Ammonia tepida and Ammonia parkinsoniana with rare specimens of Brizalina striatula,
the number of species at these stations varies from 5 to 8 and the correspondent Shannon
Index is around 1.5. Sample GBS-03, collected in the industrial sludge, is barren of benthic
foraminifera. The other samples collected along the Gabes transect (GBS-04 to -15) contain
a variable number of species from 6 (in GBS-09) to 37 (in GBS-10 and -11), with a Shannon
Index of 0.8 and 2.6, respectively. In these samples the assemblages mostly consist of A.
tepida, Asterigerinata mamilla, B. striatula, Bulimina alazanensis, Bulimina elegantisima,
Eggerelloides scaber.

Samples collected along the Djerba transect (DJB-01 to -15) generally consist of
Amphistegina lessonii, Gavelinopsis praegeri, Neoconorbina terquemi, Peneroplis spp.
Planorbulina mediterranensis, varying in abundance from sample to sample. The number
of species varies from 15 to 48 and Shannon Index ranges from 2.2 to 3.0.

Assemblage composition, documented in coastal stations, is very variable. Station CST-
04 is barren of benthic foraminifera, whereas stations CST-06 and -07 contain the dominant
Ammonia beccarii, and abundant A. parkinsoniana andQuinqueloculina laevigata. All other
species (Supplemental Information S1) are rarer. The species number varies from 12 to 25
and the Shannon Index from 2.2 to 2.3. The more representative species identified in the
Gulf of Gabes are documented in Figs. 6 to 11.

The SIMPROF Cluster analysis identified 6 clusters/groups within the Gabes and Djerba
samples. All coastal stations including the foraminifera-barren coastal (CST-04) and Gabes
sample (GBS-03) grouped separately (Figs. 2 and 3).

This outlier group was not used for additional statistical analyses because samples were
either not analysed for the geochemical characterization (e.g., coastal stations) or were
barren of benthic foraminifera (GBS-03 and CTS-04) or, in the case of all the CST, samples
were collected in a different season (January: winter). Thus, assemblages that are linked to
seasonality cannot be compared to those from the Gabes and Djerba transects collected in
July (summer) 2014.

Cluster A includes only sample GBS-06. This sample separates from Cluster B (samples
GBS-07 to -08 and GBS-10 to -16) only because of the abundant presence of Textularia
conica (66 specimens) that is otherwise rare (Table 3, Supplemental Information S1).

Cluster B is characterized by the highest contributions from E. scaber, B. elegantissima
and B. striatula (Table 3). Bulimina marginata has a lower, yet similarly consistent
contribution to the group.

Cluster C groups samples GBS-04 and -05 and has dominant contributions from
Trochammina inflata and Rosalina villardeboana and lesser contributions by Q. laevigata,
T. conica, B. striatula, B. elegantissima and Cornuspira involvens (Table 3).

Cluster D groups samples DJB-01 and -12 that are characterized by A. lessonii and to a
lesser extent by R. villardeboana and P. mediterranensis (Table 3).
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Figure 5 LINKTREE dendrogram showing the separation of GBS and DJB samples according to the
major pollutants.

Full-size DOI: 10.7717/peerj.8839/fig-5

Cluster E groups all the other samples from the Djerba transect (DJB-02 to -11, and DJB-
13 to -15) that are predominantly characterized by Rosalina macropora and R. villardeboana
and to a lesser extent byB. striatula, A. lessonii, A. mamilla andPeneroplis pertusus (Table 3).

Cluster F groups samples GBS-01 to -02 andGBS-09. These are characterized byA. tepida
and B. striatula (Table 3).

DISCUSSION
Environmental conditions in the study area
The adverse environmental conditions in the Gulf of Gabes are well documented (e.g.,
El Zrelli et al., 2015; El Zrelli et al., 2017; El Kateb et al., 2016; El Kateb et al., 2018b and
references therein). The research of El Zrelli et al. (2017) highlighted that the order of
heavy metal concentrations in sediments follows Zn>Cd>Cr>Pb>Cu>Hg and that at least
Zn and Cd derive from phosphogypsum. These authors observed that concentrations
are higher close to the industrial complex and decrease toward the open sea. El Kateb
(2018) and El Kateb et al. (2020) report high heavy metals (Zn, Cd, As, Cr, Fe, Cu) and
phosphorus concentrations in the sea water as well as elevated Ptot and TOC in sediment
samples collected close to the industrial complex at Gabes. The concentrations of the
measured elements are higher along the Gabes transect than along the Djerba transect,
with the exception of Zn. In particular, Zn concentrations in the sea water, along the Gabes
transect (ranging between 7.05 ppm at GBS-11 and 64.63 ppm at GBS-16), are not as
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Figure 6 Images of selected foraminifera species. (A–B) Ammoglobigerina globigeriniformis (Parker and
Jones, 1865): (A) spiral view; (B) umbilical view. (C–D) Ammoscalaria runiuina (Heron-Allen and Ear-
land, 1916): C spiral view; D umbilical view. (E–G) Clavulina difformis (Brady, 1884): E, G side view; F
top view. (H–I) Eggerelloides scaber (Williamson, 1858): side view. (J–K) Glomospira charoides (Jones and
Parker, 1860): (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8839/fig-6
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Figure 6 (. . .continued)
side view. (L–M) Glomospira gordialis (Jones and Parker, 1860): L spiral view; M umbilical view. (N–O)
Lagenammina fusiformis (Williamson, 1858): side view. (P–Q) Paratrochammina challengeri (Brönnimann
and Whittaker, 1988): P spiral view; Q umbilical view. (R–S) Paratrochammina madeirae (Brönnimann,
1979): R spiral view; S umbilical view. (T–U) Trochammina inflata (Montagu, 1803): T spiral view; U um-
bilical view. (V–W) Psammosphaera fusca (Schulze, 1825): V spiral view; W umbilical view. (X–Y) Textu-
laria sp.: side views. (Z–AA) Textularia conica (d’Orbigny, 1839): side views. BB-CC Textularia pseudoru-
gosa (Lacroix, 1932). (DD–EE) Textularia agglutinans (d’Orbigny, 1839): side views. (FF–HH) Textularia
calva (Lalicker, 1935): FF, HH side views; GG top view. (II–JJ)Mychostomina revertens (Rhumbler, 1906):
II spiral view; JJ umbilical view.

high as those reported by El Zrelli et al. (2017) in their coastal station sediments (ranging
from 5.2 ppm along the coast to 7,165 ppm in front of the industrial complex). On the
contrary it is relatively abundant in samples from the Djerba transect with a maximum of
104.75 ppm at DJB-15. El Kateb et al. (2020) propose that the low concentrations at Gabes
could be related to the precipitation of Zn from the water into sphalerite (El Kateb et al.,
2018b) and the subsequent transport of part of the remaining Zn off-shore during low
tides (Othmani et al., 2017), while the high concentrations at Djerba could be related to the
decay of plankton, which releases dissolved Zn into the seawater (Moore & Ramamoorthy,
1984).

Based on the BIOENV and global BEST test, 5 of the measured environmental variables,
cadmium (Cd), arsenic (As), phosphorus (P), total organic carbon (TOC) and total
phosphorus (Ptot), were found to be best indices to separate (statistically significant at
p < 0.001) the biotic (foraminiferal) assemblage data (ρ = 0.764). The LINKTREE plot
(Fig. 5) shows that all the GBS samples cluster out from the DJB samples. The former all
have elevated values in both the measured water (Cd, As, P) and sediment (TOC and Ptot)
parameters.

Living foraminifera assemblages and their significance
Cluster A and B: polluted environment
These two clusters can be considered together as the only difference between the two is the
abundant T. conica in Cluster A (which is composed by only one sample, GBS-06) and a
different substratum (Fig. 3), Facies G3 for GBS-06, and Facies G4 for all stations of Cluster
B. These two clusters group the majority of the stations in the Gulf of Gabes (Figs. 2 and 3).

The dominant foraminiferal species is E. scaber (Table 3).Murray (2006) described this
species as infaunal, detritivore and typical of shelf environments. Bouchet (2007) suggests
that the sedimentary detrital organic matter represents the main food resource for this
species. Dessandier et al. (2016) studied the distribution of E. scaber along the Portuguese
coast, highlighting its preference for environments characterized by high-quality of the
organic matter (e.g., high chlorophyll-a to phaeopigment ratio and available amino
acids). Murray (2013) reported that E. scaber is sensitive to salinity not exceeding 24 psu
and oxygen depletion (<0.5 ml/L), and that it is tolerant to fluctuations in temperature
and heavy metal pollution. Other highly contributing species of Cluster A and B are
B. elegantissima and B. striatula, two stress-tolerant species able to survive in polluted
environmental conditions and under oxygen depletion (e.g., Murray, 2006; Dimiza et
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Figure 7 Images of selected foraminifera species. (A–B) Cornuspira involvens (Reuss, 1850): side view.
(C–D) Patellina corrugata (Williamson, 1858): C spiral view; D umbilical view. (E–F) Vertebralina sp.:
(E) spiral view; F umbilical view. (G–H)Wiesnerella auriculata (Egger, 1893): G spiral view; H umbilical
view. (I–K) Articulina carinata (Wiesner, 1923): I, K side view; J top view. (L–N) Adelosina carinata-striata
(Wiesner, 1923): L, M side view; N top view. (O–Q) Adelosina cliarensis (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8839/fig-7
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Figure 7 (. . .continued)
(Heron-Allen and Earland, 1930): O, Q side view; P top view. (R–S) Adelosina laevigata (d’Orbigny, 1826)
(juvenile):side views. (T–U) Affinetrina gualtieriana (d’Orbigny, 1839): side views. (V–X) Cycloforina con-
torta (d’Orbigny, 1846) (with a broken neck): V, W side view; X top view.; (Y–AA) Lachlanella variolata
(d’Orbigny, 1826): Y, AA side view; Z top view. (BB–CC) Pseudotriculina laevigata (d’Orbigny, 1826):
side view. (DD–EE) Quinqueloculina bidentata (d’Orbigny, 1839): side view. (FF–GG) Quinqueloculina
bosciana (d’Orbigny, 1839): side view. (HH–JJ) Quinqueloculina jugosa (Cushman, 1944): HH, JJ side
view; II top view.

al., 2019, and references therein). Martins et al. (2016a) documented the preference
of B. striatula for high quality organic matter enriched in proteins, carbohydrates and
chlorophyll -a.

In general, taxa which are tolerant to such conditions are typically associated with
muddy substrates that can accumulate high amounts of organic matter (e.g., Van der
Zwaan et al., 1999 and reference therein). This is evident as Cluster B includes stations
from Facies G4 (clay with centimetric biogenic fragments). For Cluster B, the SIMPER
analysis additionally identified the stress-tolerant species A. tepida and B. marginata (e.g.,
Dimiza et al., 2019; Jorissen et al., 2018), as well as Haynesina depressula, and Nonionoides
grateloupi, which are classified as ‘‘indifferent species’’ by Jorissen et al. (2018). The relatively
high contribution of A. mamilla in Cluster B (Table 3), in addition to its high abundances
in samples from Clusters A and B (Supplemental Information S1), is not consistent with its
life strategy from the literature. Murray (2013) described this species as epifaunal clinging
on large detrital fragments or on marine vegetation. Dimiza et al. (2016) show the negative
correlation between abundances of A. mamilla and the percent of mud. Is the quality of
the organic matter playing a role on the abundance of this species? The abundance of
this species may be, indeed, linked to the high quality of the organic matter, whose δ13C
signature corresponds to marine phytoplankton, along the Gabes transect (Supplemental
Information S2; El Kateb et al., 2018b; El Kateb et al., 2020). Alternatively, the centimetric
bioclasts characterizing Facies G4 may provide a suitable ecological niche for A. mamilla
(Fig. 3, Table 2).

The LINKTREE (Fig. 5) shows that stations grouped in Cluster A and B separate based on
the relatively high (in relation the Djerba samples) values of TOC (≤3.34 wt. %), As (≤1.26
µg/L), Cd (0.73-1.19 µg/L) and phosphorus both in the sediments (87.1 > Ptot > 28.7
µmol/g ) and sea water (P > 144 µg/L).

In conclusion, the living (stained) benthic foraminifera assemblages from Clusters A
and B are interpreted to reflect high sedimentary organic matter supply, in a stressed
environment due to heavy metals and phosphorus contamination deriving from the Gabes
industry.

Cluster C: polluted Environment characterized by physicochemical
variability
Major contributors of this cluster (exceeding 13%) are T. inflata and R. vilardeboana
(Table 3). It groups only two stations (GBS-04 and -05) which are characterized by sandy
carbonate sediments and large biogenic fragments (Facies G3 in Table 2, El Kateb et al.,
2018b) that may represent an ideal habitat for R. villardeboana. This species is described as
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Figure 8 Images of selected foraminifera species. (A–C) Quinqueloculina laevigata (d’ Orbigny, 1839):
A, C side view; B top view. (D–F) Quinqueloculina pseudobuchiana (Luczowska, 1974): D, F side view;
E top view. (G–H) Quinqueloculina seminula (Lineaeus, 1758): side views. (I–J)Miliolinella subrotunda
(Montagu, 1803): side views. (K–M)Miliolinella webbiana (d’Orbigny, 1839): (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8839/fig-8
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Figure 8 (. . .continued)
side views. (N–O) Biloculina (?) sp.: side views. (P–Q) Laevipeneroplis karreri (Wiesner, 1923): P umbil-
ical view; Q spiral view. (R–T) Peneroplis planatus (Fichtel and Moll, 1798): R spiral view; S side view; T
umbilical view. (U–W) Peneroplis pertusus (Forskål, 1775): U, W spiral view; V side view. (X–Y) Sorites or-
biculus (Ehrenberg, 1839): X spiral view; Y umbilical view. (Z-AA) Carterina spiculotesta (Carter, 1877): Z
spiral view; AA umbilical view. (BB–CC) Lagena striata (d’Orbigny, 1839) side view. (DD–FF) Lenticulina
cultrata (de Montfort, 1808): DD, FF spiral view; EE side view. (GG–HH) Bolivina plicatella (Cushmann,
1930): side view. (II–JJ) Bolivina difformis (Williamson, 1858): side view. KK-LL Brizalina striatula (Cush-
man, 1922): side view.

stress-tolerant in culturing experiments (Hintz et al., 2004) and has been reported living
in shallow water (Erginal et al., 2013), similarly to station GBS-04, with a water depth
not exceeding 12 m (El Kateb et al., 2018b). Trochammina inflata is a species known to
be highly tolerant to physicochemical variability (Murray, 2006; Martins et al., 2016b). It
is a cosmopolitan epifaunal or infaunal, euryhaline marsh species, living down to 60 m
of water depth and with a general preference for muddy substrates (Usera et al., 2002;
Murray, 2006; Benito et al., 2016). The abundance of T. inflata within these samples may
be due to the physicochemical variability linked to the tides that in this region reach the
highest variations (up to 2 m, Aloulou, EllEuch & Kallel, 2012). Other species of this cluster
are the stress-tolerant B. striatula, B. elegantissima and C. involvens, attributed to group 3
third-order opportunists, tolerant to and favoured by the first stages of organic enrichment
(Alve et al., 2016; Jorissen et al., 2018). Rare specimens of Q. laevigata and T. conica (not
exceeding 3 and 13 specimens, respectively) also occur, these species are considered as
‘‘sensitive’’ by Jorissen et al. (2018).

Cluster C is characterized by low species and low specimen numbers. In the LINKTREE
(Fig. 5) it groups with Cluster A and B with relatively high TOC (≤3.34 wt. %), As
(≤1.26 µg/L), Cd (0.73–1.19 µg/L) and high phosphorus concentrations both in the
sediments (87.1 < Ptot > 8.7 µmol/g) and the sea water (P > 144 µg/L). In summary,
the living (stained) benthic foraminifera assemblages from Cluster C represent a stressed
environment under the impact of heavy metal and phosphorus contamination deriving
from the Gabes industry. This is in combination with unstable physicochemical conditions
that may account for the presence of more sensitive species.

Cluster D and E: Seagrass meadows and “pristine” sites
These clusters group all stations from theDjerba transect (Figs. 2 and 3). The living (stained)
foraminifera assemblages of Clusters D and E show significant differences in comparison to
the other clusters (Fig. 3, Table 3), highlighted by the consistent presence of sensitive species
such as A. lessonii. Amphisteginids are large symbiont-bearing foraminifera widely used as
bioindicators to assess water quality due to their fast response to environmental changes,
e.g., water temperature and photo-oxidation (e.g., Emrich, Martínez-Colón & Alegria,
2017, De Freitas Prazeres, Martins & Bianchini, 2012; Hallock et al., 2006; Spezzaferri et
al., 2018). Water transparency is an essential factor for Amphistegina spp. because these
organisms host symbionts and, as such, are light dependent (Hallock, 1981). El Kateb et
al. (2018c) suggest that the presence of P. oceanica meadows along the Djerba transect
promotes the development of A. lessonii. This species is also very sensitive to heavy metals
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Figure 9 Images of selected foraminifera species. (A–B) Bulimininella elegantissima (d’Orbigny, 1839):
side view. (C–D) Bulimina elongata (d’Orbigny, 1846): side view. (E–F) Bulimina marginata (d’Orbigny,
1826): side view. (G–H) Floresina sp.: side view. (I–J) Fursenkoina acuta (d’Orbigny, 1846): side view. (K–
M) Siphogenerina raphana (Parker and Jones, 1865): K, L side view; M top view. (N–O) Sigmavirgulina
tortuosa (Brady, 1881): side view. (P–R) Abditodentrix rhomboidalis (Millet, 1899): (P–Q) side view; R top
view. (S–U) Uvigerina sp.: (S–T) side view; U top view. (V–W) (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8839/fig-9
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Figure 9 (. . .continued)
Uvigerina canariensis (d’Orbigny): side view; (X–Y) Valvulineria minuta (Parker, 1954): X umbilical view;
Y spiral view. (Z–AA) Glabratella altispira (Buzas, Smith and Beem, 1977): Z spiral view; AA umbilical
view. (BB–CC) Facetocochlea pulchra (Cushman, 1933): BB spiral view; CC umbilical view. (DD–EE)
Rosalina bradyi (Cushman, 1915): DD spiral view; EE umbilical view. (FF–GG) Rosalina globularis
(d’Orbigny, 1826): FF spiral view; GG umbilical view. (HH–II) Rosalina macropora (Hofker, 1951):
HH spiral view; II umbilical view. (JJ–KK) Rosalina pellucida (Said, 1949): JJ spiral view; KK umbilical
view. (LL–MM) Rosalina villardeboana (d’Orbigny, 1839): LL spiral view; MM umbilical view. NN-PP
Discorbinella concinna (Brady, 1884): specimen with floating chamber, NN spiral view; OO side view, PP
umbilical view.

pollution because these pollutants directly affect its symbiotic algae. Furthermore, De
Freitas Prazeres, Martins & Bianchini (2011) demonstrated, in culture, that zinc exposure
causes visual alteration such as bleaching and/or dark brown areas in the test.

Cluster D is characterized by A. lessonii and to a lesser extent by R. villardeboana,
P. mediterranensis and R. macropora and includes two samples DJB-01 collected in the
P. oceanicameadow (Facies D1) and DJB-12 (Facies D3, well-preserved biogenic fragments
of bivalves, calcareous algae, gastropods and bryozoans), characterized by abundant
degraded algae. R. vilardeboana is especially abundant at station DJB-01, where P. oceanica
traps the sediments in its rhizomes to form small barriers. Planorbulina mediterranensis
is epifaunal clinging on hard substrata and/or seagrass (Villanueva Guimerans & Cervera
Currado, 1999). Mateu-Vicens et al. (2010) mentioned high abundances of this species in
P. oceanicameadows, which is corroborated at station DJB-01 where the seagrass is densely
covering the sea floor (El Kateb et al., 2018b). As an epifauna foraminifera, R. macropora is
generally associated with sandy and vegetated substrate (Vidović et al., 2014 and references
therein). Elshanawany et al. (2011) proposedR. macropora to be a species relatively sensitive
to pollution.

Cluster E is characterized primarily by R. macropora, R. villardeboana in addition to
the species B. striatula, A. lessonii, A. mamilla, P. pertusus. It includes all the remaining
samples from Djerba covering a variety of Facies, from D1 to D3, ranging from P. oceanica
meadows to fine sediment with biogenic clasts of various sizes. Similarly to the epibenthic
and sensitive A. lessonii, P. pertusus is also a symbiont-bearing species and needs high light
intensities (Samir & El-Din, 2001 and references therein). Amao, Kaminski & Setoyama
(2016) suggested that this species is associated with the presence of marine flora. There are
no investigations showing the pollution impact on this species but as a symbiont-bearing
foraminifer, it can be considered as sensitive to anthropogenic-related stressors such as
heavy metals. Within this cluster the occurrence of A. mamilla, R. vilardeboana and R.
macropora seems to be linked to P. oceanica meadows, which provides them with an ideal
substratum. Brizalina striatula is an infaunal species relatively tolerant to oxygen depletion
and feeding on organic detritus (e.g., Murray, 2006). El Kateb et al. (2018a) documented
abundant B. striatula linked to P. oceanica meadows, indicating that the remains of P.
oceanica may represent a potential food resource for this species.

All the Djerba sites are characterized by the highest species numbers, specimen numbers
and Shannon diversities (Supplemental Information S1). They separate in the LINKTREE
(Fig. 5) based on the lowest values of P, Ptot and Cd (<17.6 µg/L, <0.62 µmol/g and 23.5
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Figure 10 Images of selected foraminifera species. (A–B) Rosalina bulloides (d’Orbigny, 1839): A spiral
view; B umbilical view. (C–D) Cassidulina obtusa (Williamson, 1858): C spiral view; D umbilical view. (E–
F) Discorbinella berthelotti (d’Orbigny, 1839): E spiral view; F umbilical view. (G–H) Cibicidella variabilis
(d’Orbigny, 1826): G spiral view; H umbilical view. (I–J) Gavelinopsis praegeri (Heron-Allen and Earland,
1913): I spiral view; J umbilical view. (K–L) Neoconorbina terquemi (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8839/fig-10
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Figure 10 (. . .continued)
(Rzehak, 1888): K spiral view; L umbilical view. (M–N) Planorbulina mediterranensis (d’Orbigny, 1826):
M spiral view; N umbilical view. (O–P) Planorbulina mediterranensis (d’Orbigny, 1826): O spiral view; P
umbilical view. (Q–R) Cymbaloporetta bradyi (Cushman, 1915): Q spiral view; R umbilical view. (S–U)
Asterigerinata mamilla (Williamson, 1858): S spiral view; T side view; U umbilical view. (V–X) Astronon-
ion stelligerum (d’Orbigny, 1839): V, X spiral view; W side view. (Y–Z) Haynesina depressula (Walker and
Jacob, 1798): Y spiral view; Z umbilical view. (AA–BB) Haynesina simplex (Cushman, 1933): AA spiral
view; BB umbilical view. CC-DDMelonis affinis (Reuss, 1851): CC spiral view; DD umbilical view. (EE–
FF) Nonion fabum (Fichtel and Moll, 1798): EE spiral view; FF umbilical view. GG-HH Nonionella turgida
(Williamson, 1858): GG spiral view; HH umbilical view. (II–JJ) Noinionoides grateloupi (d’Orbigny, 1826):
II spiral view; JJ umbilical view.

Figure 11 Images of selected foraminifera species. (A–B) Ammonia beccarii (Linnaeus, 1758): A spi-
ral view; B umbilical view. (C–D) Ammonia convexa (Collins, 1958): C spiral view; D umbilical view. (E–
F) Ammonia parkinsoniana (d’Orbigny, 1839): E spiral view; F umbilical view. (G–H) Ammonia tepida
(Cushman, 1926): G spiral view; H umbilical view. (I–J) Amphistegina lessonii (d’Orbigny, 1826): I spiral
view; J umbilical view. (K–L) Amphistegina lobifera (Larsen, 1976): K umbilical view; L spiral view. M-N
Elphidium crispum (Linnaeus, 1758): spiral view. (O–P) Elphidium depressulum (Cushman, 1933): spiral
view. (Q–R) Elphidium incertum (Williamson, 1858): spiral view.

Full-size DOI: 10.7717/peerj.8839/fig-11

µg/L, respectively) confirming the more negative association of the species, identified in
the SIMPER analysis for Clusters D and E, with lower levels of pollution.

In summary, benthic foraminifera of Cluster D and E seem to be linked to P.
oceanica meadows. Sensitive species such as A. lessonii and peneroplidae suggest relatively
‘‘pristine’’ environments where anthropogenic stress is minor (Triantaphyllou et al., 2005;
Koukousioura et al., 2012).
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Table 3 Statistical analyses. SIMPER analysis using the Bray–Curtis similarity matrix on fourth-root transformed living (stained) benthic
foraminifera abundance data from the Lesser Syrtis. The main species contributing to the similarity within the SIMPROF cluster groups are
identified. Note: Only the taxa contributing>5 to the within-group average similarity are shown.

Cluster Species Average
Abundance

Average
similarity

Similarity/SD Contribution

Eggerelloides scaber 2.96 6.84 9.93 11.95
Buliminella elegantissima 2.43 5.65 9.28 9.87
Brizalina striatula 2.27 5.22 9.29 9.12
Asterigerinata mamilla 2.23 4.98 6.45 8.71
Haynesina depressula 1.67 3.56 4.11 6.22
Ammonia tepida 1.73 3.45 3.87 6.03
Nonionides grateloupi 1.43 3.00 5.20 5.25

B

Bulimina marginata 1.29 2.92 9.65 5.10
Trochamina inflata 1.69 7.61 N/A 13.68
Rosalina vilardeboana 2.04 7.27 N/A 13.07
Quinqueloculina laevigata 1.25 5.78 N/A 10.40
Textularia conica 1.54 5.78 N/A 10.40
Brizalina striatula 1.48 4.86 N/A 8.74
Buliminella elegantissima 1.28 4.86 N/A 8.74

C

Cornuspira involvens 1.09 4.86 N/A 8.74
Amphistegina lessonii 2.90 4.55 N/A 8.70
Rosalina vilardeboana 4.08 4.36 N/A 8.33
Planorbulina mediterranensis 2.43 3.75 N/A 7.17
Rosalina macropora 2.21 3.07 N/A 5.86

D

Mychostomina revertens 1.79 2.72 N/A 5.19
Rosalina macropora 1.99 5.29 6.76 9.83
Rosalina vilardeboana 1.57 4.11 4.57 7.65
Brizalina striatula 1.55 4.01 4.76 7.45
Amphistegina lessonii 1.77 4.00 1.87 7.44
Asterigerinata mamilla 1.58 3.50 2.08 6.51

E

Peneroplis pertusus 1.41 2.85 1.36 5.30
Ammonia tepida 1.49 13.12 8.79 36.52

F
Brizalina striatula 1.24 13.12 8.79 36.52

Cluster F: Major industrial impact
This cluster groups Sample GBS-01, −02 and −09. The first two samples are located in
front of the industrial complex at Gabes and are the closest to the pollution source, whereas
sampleGBS-09 is located further away. SampleGBS-02was collected in the industrial sludge
consisting of dark siliciclastic sediments (Facies G1, Fig. 3, Table 3), where concentrations
of TOC and heavy metals reach the highest values in both seawater and marine sediments
(Supplemental Information S2; El Zrelli et al., 2015; El Zrelli et al., 2018; Ayadi, Aloulou &
Bouzid, 2015; El Kateb et al., 2018b). Major contributors to this cluster are A. tepida and
B. striatula, two stress-tolerant species. In particular, A. tepida is well known to tolerate
pollution and elevated concentrations of TOC (e.g., Samir & El-Din, 2001; Armynot du
Châtelet, Debenay & Soulard, 2004; Dimiza et al., 2019). This cluster is characterized by
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the lowest species numbers, specimen numbers and Shannon diversities (Supplemental
Information S1). The grouping of Sample GBS-09 with -01 and -02 is possibly due to the
fine nature of the sediments that favors the accumulation of organic matter resulting in
high TOC concentrations (Facies G5, Table 3, Figs. 3 and 5) (e.g., Tyson, 1995; Bergamaschi
et al., 1997). Samples GBS-02 and−01 are still distinguished by their strong relation to high
concentrations of Ptot, As and Cd (>282 µmol/g, >2.9 µg/L and 2.61 µg/L, respectively).

The living benthic foraminifera of Cluster F can be interpreted as a stress-tolerant
assemblage related to high pollution levels (P, As, Cd) in a eutrophic setting.

Validation of results
El Kateb et al. (2018b) documented, in the target region, different environmental conditions
characterized by differing geochemical parameters such as TOC, phosphorous content and
grain size. Nevertheless, some dominant foraminiferal species are present over a large part
of the studied area and are common in the Mediterranean Sea, both in the open sea and
lagoons (Martins et al., 2015; Martins et al., 2016a) and, therefore, it is difficult to assign
a specific environmental preference to them (e.g., A. mamilla, B. striatula). However, the
distribution and abundance of the most representative species, illustrated in plots (Fig.
4) clearly shows that the clusters are related to their ecological preferences. For example
the stress-tolerant species E. scaber, B. elegantissima, B. striatula, B. marginata, A. tepida
are primarily abundant in the same clusters (Cluster A, B, C and F), which correspond to
the GBS samples. On the contrary, epibenthic species, such as A. lessonii, R. macropora, R.
vilardeboana and peneroplids are also most abundant in Clusters D and E. The consistent
species distributions and clustering of stations, according to their foraminiferal content
and geochemical/facies characterization (Figs. 2 and 5), confirms that the interpretation of
species ecological preferences is plausible. It also highlights that species distributions are
linked both to pollution and substratum type (Basso & Spezzaferri, 2000).

CONCLUSION
The Gulf of Gabes, in the Lesser Syrtis (Tunisia), is presently characterized by intense
pollution from the phosphate treatment industries. This quantitative investigation
on benthic foraminiferal assemblages has revealed the presence of six clusters
representing: polluted settings (Clusters A and B); polluted environments characterized by
physicochemical variability (Cluster C), seagrass meadows and ‘‘pristine’’ sites (Cluster D
and E) and the area characterized by the major industrial impact (Cluster F).

The major pollutants in this region are phosphorus, organic matter, and heavy metals,
in particular As and Cd, affecting benthic foraminiferal assemblages at various degrees.
TOC has also an important role in controlling the assemblage composition and species
diversity of Cluster F, which is dominantly composed of stress-tolerant species. Eighteen
species are dominant but only ten show high statistical contributions to the clusters.
The most stress-tolerant species are A. tepida (Cluster F) accompanied by E. scaber, B.
elegantissima, B. striatula (Cluster A and B). Trochamina inflata may be interpreted as an
indicator of physiochemical variability in the environment (Cluster C). Amphistegina spp.,
peneroplidae, P. mediterranensis, R. macropora and R. villardeboana can be considered as
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sensitive species living in P. oceanica meadows or clinging on coarse substratum (Clusters
D and E).
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